Rank 3 Latin square designs

نویسندگان

  • Alice Devillers
  • Jonathan I. Hall
چکیده

A Latin square design whose automorphism group is transitive of rank at most 3 on points must come from the multiplication table of an elementary abelian p-group,

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Latin squares and related experimental designs

A Latin square is an arrangement of v copies of v symbols into a v× v square so that (i) each symbol occurs once in each row, and (ii) each symbol occurs once in each column. Three distinct Latin squares of order v = 4 are shown in Example 1. Other than for small v, the number of distinct (non-identical as matrices) Latin squares is not generally known, though it is known that it grows rapidly ...

متن کامل

A generalisation of t-designs

This paper defines a class of designs which generalise t-designs, resolvable designs, and orthogonal arrays. For the parameters t = 2, k = 3 and λ = 1, the designs in the class consist of Steiner triple systems, Latin squares, and 1-factorisations of complete graphs. For other values of t and k, we obtain t-designs, Kirkman systems, large sets of Steiner triple systems, sets of mutually orthogo...

متن کامل

Statistical Approaches in Analysis of Variance: from Random Arrangements to Latin Square Experimental Design

Background: The choices of experimental design as well as of statistical analysis are of huge importance in field experiments. These are necessary to be correctly in order to obtain the best possible precision of the results. The random arrangements, randomized blocks and Latin square designs were reviewed and analyzed from the statistical perspective of error analysis. Material and Method: Ran...

متن کامل

Steiner Trades That Give Rise to Completely Decomposable Latin Interchanges

In this paper we focus on the representation of Steiner trades of volume less than or equal to nine and identify those for which the associated partial latin square can be decomposed into six disjoint latin interchanges. 1 Background information In any combinatorial configuration it is possible to identify a subset which uniquely determines the structure of the configuration and in some cases i...

متن کامل

Quasi - Latin designs and their use in glasshouse exper - 1 iments

This paper gives a general method for constructing quasi-Latin square, quasi-Latin 12 rectangle and extended quasi-Latin rectangle designs for symmetric factorial experiments. Two 13 further methods are given for parameter values satisfying certain conditions. Designs are 14 constructed for a range of numbers of rows and columns so that the different construction 15 techniques are illustrated. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comb. Theory, Ser. A

دوره 113  شماره 

صفحات  -

تاریخ انتشار 2006